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Abstract—We study a class of non-universal inhomogencous deformations of both compressible
and incompressible isotropic non-lincarly elastic wedges. In the case of compressible solids we
obtain a necessary condition which the stored encrgy ought to satisfy. so that it may be possible to
deform the body in the assumed manner, by the application of surface tractions. In the case of the
incompressible solids, we show that the pressure fiekd ought to have a special structure if the assumed
form of deformation is to be possible. For certain simple constitutive theories the governing
equations can be integrated and explicit exact solutions can be obtained.

I INTRODUCTION

Recently, there has been a great deal of interest in determining inhomogencous solutions
to boundary value problems in non-lincar clasticity. Ericksen (1955) proved that all uni-
versil deformationst in compressible clastic materials, in the absence of body forces,
arc homogencous. Earlier he had shown that five classes of inhomogeneous universal
deformations are possible in the case of incompressible sotropic elastic materials (Ericksen,
1954). This result was subsequently extended to more general simple materials by Carroll
(1967), Wineman (1967) and Fosdick (1968). Universal deformations and motions play a
speeial role in both fluid and solid mechanics in that they suggest experiments in which the
deformation of the body under consideration is known from the outset. Also, many of the
simple and elegant exact solutions in both solid and fluid theories are universal. However,
there is no reason to expect all materials, say for instance rubber and steel, to respond in
an identical manner, Hence, it would scem more reasonable for one to ask the following
question : given a non-homogencous deformation, what cluss of constitutive equations can
support such a deformation?

In the light of the above remarks, it is not surprising that a considerable amount of
interest has been evinced recently in the study of inhomogencous deformations of isotropic
non-lincar clastic materials {cf. Sensenig, 1965 Holden, 1968 ; Varley and Cumberbaich,
1977 ; Ogden, 1977; Isherwood and Ogden, 1977 Curric and Hayes, 1981 ; Rajugopal and
Wineman, 1985 ; Rajagopal et al., 1986 ;: Chao ez al., 1987 ; McLeod et al., 1988 ; Abeyaratne
and Horgan, 1984 Horgan, 1989; Chung ¢f af., 1986 Carroll, 1988).

In this paper we study a class of non-universal inhomogencous deformations which is
possible in subclasses of compressible and incompressible isotropic elastic materials. That
is, the deformations share a common structure when expressed in terms of certain arbitrary
functions, but these differ from material to material. The tractions which are necessary to
effect and support the deformation under consideration can be computed. and these will
also differ from material to material.

We shall consider the inhomogencous squeezing or fanning or non-lincar clastic
wedges. For the assumed form of the deformation, the equilibrium equations reduce to a
system of coupled non-lincar ordinary differential equations, and thus given a specific

41'A deformation is universal, for a given class of bodies subject to a given body force b, if it satisfies the
equations of motion {or cquilibrium) for all the bodies belonging to the class.
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constitutive model we can discuss the existence of a solution (or solutions) to the problem
under consideration. In the case of isotropic compressible hyperelastic materials we obtain
a necessary condition which the stored energy function ought to satisfy in order that there
exists a solution to the boundary value problem under consideration. For simple constitutive
theories. these equations can be integrated and explicit exact solutions established (cf. Tao
and Rajagopal. 1991 ; Rajagopal and Tao. in press: Tao and Rajagopal. 1990).

In Section 2 the inhomogenecous deformation is introduced and the basic kinematics
are discussed. The following section is devoted to a discussion on isotropic elastic materials.
The deformation of incompressible isotropic materials 1s discussed in Section 4 and the
finul section deals with a study of compressible elastic materials within the context of the
inhomogeneous deformation under consideration.

2. KINEMATICS

We consider the class of deformations

r=A(O)R.
0 = B(O),
=27, h

where (R.O.7) and (r. 0, 2) denote the reference and current coordinates of the same
particle, in a cylindrical coordinate system,

The detformation under consideration is appropriate for the inhomogencous squeezing
of a wedge wherein cach radial ray emanating from the apex of the wedge remains radial,
the stretch being A(®). The deformation gradient F has the following matrix representation
for its physical components:

I I A ¢
F={0 AB 0 (2
0 0 1

where the prime denotes differentiation with respect to . Thus, referred to an orthonormal
basis the deformation gradient ¥ has the representation

F=de,@ep+AdAe, ey +ABe, ®e,+e. e, (3)
It follows from (1) that
¢ ¢ C T It
= = B .. 4
R('fR r(’r ‘O A r('r + ¢t )
and hence
¢ 0 ¢ -4 ¢ [ .
=K. . = R+ oo (5
Tor=Ror c0= ap Rer™ 5 00
A simple calculation then gives
RGrad F = (Fe, +Ge,) ® e ® ¢g. (6)

where
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FO):=A"+A—A(B')". (M
G(@®):=A4AB"+24'B". (8)
Thus. the condition for homogeneous deformation is
F©)=A"+A—A(B) =0, 9
G(@) =AB"+24'B" =0. (10)

The Cauchy—Green strain tensor B = FF" and B~ ' have the physical components

ATH(d) A4LB 0

B=| A4'B° AY(B) O (1
0 0 1
and
AYB)Y  —4dAB 0
B'= | —dd’B A+ (A)? ). 12)
B AA A+ () ( ‘ (
0 0 A8
respectively.

The principal invariants of B are

[=trB= A4 () + A (B) +1, (13
L=l +0 =1 = AP+ A4 A8 ) +ANB), (14)
1, = AYB'). (135)

Integration of (10) gives that 7, = constant, and substitution for 8’ from (15) into (9), and
integrating, gives that /, is a constant. Thus, as expected, homogencous deformation implies
constant invariants, On the other hand, if the principal invariants are constant we have

I =24 (A+ A" = AB") )+ 248 (AB"+24'B’) = 0 (16)
and

I =24"B"(AB"+2A'B") = 0. (17)
Since AB” # 0, (17) implies (10), and (16) then implies that cither (9) or A" = 0. Thus,
constant invariants implies that we have cither homogencous deformation, or A4 = constant
and B’ = constant.
The deformation

r=aR, 0=§0, == (18)

has constant invariants and is not homogencous if 8 # 1 (cf. Fosdick, 1968).
For isochoric deformation, (2) implics that

A*B = 1. (19)

Substituting from (19) in (9) and (10) shows that for homogeneous deformation we need
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1
F=A4"+4- —4:-—'0‘ (20

and the principal invariants become
. cao
I =1,=d"+(4 )‘+'»43+l=1. and [, = 1. 2h

3 ISOTROPIC ELASTIC MATERIALS

In the case of an elastic material the strain energy function B is a function of the
deformation gradient F. i.e.

W= H(F). (22)
The Piola stress tensor S is given by
CH
S=_.. (23)
CF

If the solid is to be isotropic, then restrictions due to frame indifference and material
symmetry imply that the strain energy function depends on £ only through the principal
mvariants:

W= W11 (24

The equations of equilibrium, in the absence ol body forees, reduces to

DivS =0, (

t
A
—

where the operator Div denotes the divergence operator with respect to the reference
coordinates.
It follows from (23) and (25) that

o tGrad =0, {20)

or, in rectangular Cartesian component form
G

A A
CX, 4 1 .\/_”

Xoap =0, (27)

In the case of incompressible solids, the Piola -Kirchholl stress tensor is given by

uil
S = —p(F )4 28
S=-pF D'+ .. (28)
where p ts arbitrary, and
W= 4,1 (29)
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I] = l
If follows from (30) that Div (F~')" = 0. and substitution from (28) into (25) gives

iy D W 53u'G dF
grad p = Div F AT rad F,

or in indicial form

oW
p. = — X 4B
boex, Cxp !

4. INCOMPRESSIBLE ELASTIC SOLIDS

An incompressible material can undergo only isochoric deformations. and hence

N

A A0
|
F=,0 0
A
0o 0 1
and
) 1’
P+t T0
A
B = i 1
S0
A A°
0 0 |

It follows that the equations of equilibrium (30) and (31) become

‘p OCWF
or (r,(, R

I L[) OCWF

ro0 LF(_) ol,,(., R

On making use of (4). (5) and (7). we obtain

-

cp W R 1
R(,R—;.'Fi (A +A—;1_j .

p AW | A ép
e A A= )+ S REE
(O~ FFq by A (” tA= )t R

By virtue of (38) and (39). ép/cO is independent of R, and (38) then gives
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(39)
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(“, ‘3:”,'
RE ¢

1
— = —— Al A"+ 14— — | = K = constant.
iR FL (A + A“) K = constant (40)

Hence.

80 S Fg aFg A\ T R (h)

It follows from (40) that the pressure field p has the form
p=Kln R+¥(Q), (42)

where W is some arbitrary function of ©.
We now make use of (29), and since [, = [, = ['say, in plane strain, we write

o) = W I. (43)
We also have
[ = Frzk‘{"["s(-\+F¢§R+1"c§(-)+ 1, (44)
so that
W 7dm + > " 15
AR, T dl T T dr T 43)
el % _ dlmr .
My Mgy 12700 (0)
Using (44) -(46) and (34) in (40) and (41) yields
op do _d'w \ 1
=24 2 Ay Al A7 _ = K, ,
ROR {dl + a7l (A") }A(/i + . A‘) N 47)
ap 4d2w A oy 1 K,»l’ "
do=tar £\ o)t 35

When A = 0 we recover the homogencous deformation F = 0. Non-zero values of K give
rise to inhomogencous deformations with A satisfying (47) and (21).

We shall next discuss a couple of specific examples. Let us consider the deformation
of a Mooncy-Rivlin material. For a Mooney-Rivlin material undergoing plane strain
deformation the strain energy function

w = {)—l I-3). (49)

where g is the shear modulus for infinitesimal deformation. Thus

a2 o

¢ @ [NV}
co LYY . (50)
OFL M OF dFs

and (47) and (48) reduce to
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cp ., 1Y
cp A 5
o~ X1 (52)

with appropriate boundary conditions.
Fu er al. (1990) have investigated the consequences of eqns (51) and (52) subject to
the boundary conditions:

A(@) = Ay, B(a) = Bo. B(—2) =B, (53)

When K = 0, they were able to integrate the equations to obtain

. -1
A(O) = I:C, +k sin {2 arc tan I:E‘i(_?%‘g-_);’:]}] . (54)
|

w]+cj_ (55)

B(©) = arc tan [ C,

While the above solution seems at first sight to be quite involved. it is casy to show that
(54) and (55) imply the deformation (1) takes the form

,‘(=/~.|X+'12Y. ,V=/{JX+A.,,Y. :=2,

ie. the deformation is homogencous. When K # 0, Fu et al. (1990) find inhomogencous
solutions. Duc to the nature of the cquations they are able to carry out a phase plane
analysis of the solution. An interesting feature of the problem is that for certain wedge
angles, and appropriate surface tractions, the deformation of the wedge is not unidirectional,
that is, there are subdomains of the wedge wherein material elements move towards the
apex in some of them and away from the apex in others.

Next, let us consider the case of a generalized power-law Neo-Hookcean solid. The
strain energy function for such a material has the form

W=‘;-{[I+l3(1,—3)]n—l} (56)
¥ n

and thus the Cauchy-Stress T is given by
b n-1|
T= —pl+u|il+~';(1.—3):| B, (57)

where u > 0 is the shear modulus and b and n are positive numbers. When n = | the model
reduces to that of a Neo-Hookean solid. It is well known that the equations of cquilibrium
for a power-law material modeled by (56) can lose ellipticity in plane strain when the power-
law exponent n < 1/2. In the case of such a material, the pressure field takes the form

o .
p(R.©) = paln R+pu[1+(1)~'(/, —3)]""%+2pf M+, =3 ;:, dO+C,.

(38)

SAg 29:6-F
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where 2 = n b, and ¢ and C, are constants. and 2x 1s the angle of the undeformed wedge.
Notice that (58) has the same form as predicted by (42).

Rajagopal and Tao (in press) have studied the deformations in such a wedge. Even
when a = 0. which corresponds to a bounded pressure field. thev find inhomogeneous
solutions which have a “boundary laver structure™ in the sense that adjacent to the boundary
the deformation is inhomogeneous. while in the core region the deformution is
homogeneous. They also found inhomogencous solutions which correspond to the pressure
field which varies logarithmically with the radial coordinate.

5. COMPRESSIBLE ELASTIC SOLIDS

We now examine the possibility of inhomogencous deformations of the form (1), 1.¢.
plane deformations for which radial lines remain radial lines and undergo unitorm stretch.
in compressible isotropic elastic solids. In the incompressible case, such inhomogeneous
solutions are generally associated with a radial term in the pressure. However, as we
discussed earlier in the power-law Neo-Hookean solid. inhomogencous solutions arc poss-
ible even when there is no radial dependence in the pressure. The stresses corresponding to
a deformation of the type (1) in a compressible sohd cannot exhibit a radial dependence
since the physical components of F are a function of @ only. and thus we might not expect
to find inhomogeneous solutions. However, as we shall see, this is not so.

By virtue of (6), the equations of equilibrium (27) take the form

(‘.:”» » RN T ke . 0 (_())
R e S L LA I N J
O ClFy g
A R P (60)
e e A '.JVH T ,

Although this is not a lincar system, it is clear that one solution ts the homogencous solution
= 0and ¢ = 0 and that inhomogencous solutions are possible only if

W AW WY
- = 0. (61)

. 42 ~ g ~
My O OF.o Cluy

If (39) und (60) have a non-trivial solution, then, there exist vectors mand N such that

NNy =0 (62)
s n N Ny =0, )2
n‘\.'.{ 11_\','” AN UIEAN]
Indeed, from (59) and (60), we may take
n=Fe, +Ge); N =c¢ey. (63)

Equation (62) implics that the acoustic tensor is not positive-definite.

Next, we shall investigate specific materials which meet the requirement (61) which
allows for inhomogencous solutions. Let us consider the Blatz-Ko material for which the
strain cnergy lunction ¥ has the form

- i I: N =
M =2[[‘+Z(I‘)‘ —:}. (64)

where g is the shear modulus. A lengthy but straightforward calculation shows that the
equations of cquilibrium reduce to (cf. Tao and Rajagopal. 1990)



Deformations of non-linearly elastic wedges M3

_d [._,i' ]+ i : 4 _y, (63)

LB Y4 T ABEY T BT
and
d l “ay 1, &
e — -2 e =), 66)
d@[A‘(B’)"‘ +A"(8’)’] (B (
Defining
4 { {
t=—=d—, gr=-— and s:=-——=-. 67
P 4‘4 g: =3 and s B (67)
(65) and (66) can be re-written as
s+ igs v q—gs—Lg Hg) s =0, (63)
and
. r
[s(p =t =16p )y +1}{ t — < = (). (69)
If the solution is to be inhomogencous, then the necessary condition (61) will have

to be met. A simple computation shows that (61) implics that A(@) has to satisty the
requirement

— A
: =+/3 (70)
Is

and thus
A(O) = 30tV an

However, A{©) should also satisfy the equations of equilibrium (68) and (69). By virtue of
(67) and (71), it follows that

(z ~ ”f) =0 (72)
48 - - -

and thus A(©) given by (71) satisfies the equation of cquilibrium (69). Once A(®) has been
determined, we can go ahead and find B(©) from (68). Notice that the solution (71) is not
a symmetric solution about the ray @ = 0, and thus the tractions which have to be applied
on the boundarics of the wedge have to be different 0l © = +2and @ = ~2,

Next, we shall consider the class of Hadamard materials. Such materials arc defined
by a strain energy function of the form

”'"=-“b'([;—3)+b3(13"—3)+11(,3}, (73}
where A, and b, arc constants and / is an arbitrary function of /4.

For the class of Hadamard materials a straightforward computation shows that the
equations of equilibrium reduce to
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uF =0, (74)
i+ 2C AT+ 2R (L) +344°B " h7(1,))G = 0. (75)
where
coW
EL = L. (76)

Notice that F = 0 and G = 0. i.e. the homogeneous deformation. is the solution unless
pA2C A+ 240 (1) +44° B h" (1) = 0. (77

Thus. inhomeogeneous deformations are possible in materials wherein the function # satisfies
the above equation subject to the appropriate boundary conditions.
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